Quantum Mechanics:^a short introduction

Gert Aarts

Swansea University Prifysgol Abertawe

- **P** quantum mechanics is the basic theory underlying all of physics
- developed in the first part of the 20th century to \bullet address some fundamental questions
	- why are atoms stable?
	- what is light?
	- why do spectra from e.g. stars have discrete lines?

...

• it has led to a revolution in physics, replacing classical (Newtonian) mechanics

perhaps surprisingly, QM had immediate impact on theunderstanding of materials

- **C** conductors
- *C* insulators
- superconductors
- **Semi-conductors**

and hence led to the development of

- **o** transistors
- computer chips
- nanotechnology \bullet
- cell phones, tablets ...

therefore, all the technology you are currently using buildson quantum mechanics

in this lecture, I want to highlight one feature of QM

- energy quantisation
- responsible for the stability of matter
- **C** and ultimately material properties

Classical energy

in Newtonian mechanics, the energy of ^a particle can takeany value (modulo constraints)example:

- particle in harmonic potential: $V(x) = \frac{1}{2}kx^2$ \bullet
- total conserved energy:

$$
E = K + V = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 \ge 0
$$

determined by initial conditions: here

$$
x(t=0) = 0
$$

$$
v(t=0) = v_0
$$

Quantum harmonic oscillator

in quantum mechanics, energy is quantised: not all energyvalues are allowed

harmonic oscillator, with spring constant $k=m\omega$ 2<u>≃</u> :

$$
E_n = \hbar \omega \left(n + \frac{1}{2} \right) \qquad n = 0, 1, 2...
$$

groundstate, state with lowest energy:

- classical: $E_{\rm 0}$ rest in minimum of potential $\zeta_0 = 0$, particle at
- quantum: $E_0=\frac{1}{2}$ due to 'quantum fluctuations' 2 $\hbar\omega,$
- \hbar is Planck's constant

Quantum transitions

- energy changes discontinuously: ΔE $E = E_m - E_n$
- other transitions not allowed

also true in other systems, such as hydrogen atom

$$
E_n = -\frac{13.6}{n^2} \text{ eV} \qquad n = 1, 2, 3...
$$

leads to stability of matter

Schrödinger equation

- these features follow from the Schrödinger equation
- postulated by Erwin Schrödinger in 1925
- describes dynamics of the wave function $\psi(t,x)$ \bullet
- in one space dimension:

$$
i\hbar \frac{\partial}{\partial t}\psi(t,x) = H\psi(t,x)
$$

with the Hamiltonian (energy function)

$$
H = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x)
$$

of the form 'kinetic $+$ potential energy' $\,$

Schrödinger equation

- this equation was devised, not derived
- spectrum of hydrogen and other systems iscomputable and agrees with observations
- meaning of wave function not immediately clear
- standard interpretation (Bohr, Born)

$$
P(t,x) = |\psi(t,x)|^2
$$

probability density to find particle at position x at time t

C normalisation

$$
\int_{-\infty}^{\infty} dx \, |\psi(t, x)|^2 = 1
$$

hence $\psi(t, x) \to 0$ as $x \to \pm \infty$

Solving the Schrödinger equation

partial differential equation

$$
i\hbar \frac{\partial}{\partial t}\psi(t,x)=H\psi(t,x)
$$

- **e** elaborate solutions in general
- time-independent problem

$$
\psi(t,x) = e^{-iEt/\hbar}\psi(x)
$$

C ordinary differential equation (in one dimension)

$$
\left[-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x)\right]\psi(x) = E\psi(x)
$$

analytically solvable for selected potentials

Solving the Schrödinger equation

harmonic oscillator: $V(x)=\frac{1}{2}$ $\frac{1}{2}m\omega$ 2 $\textcolor{black}{\textbf{-x}}$ 2

$$
\left[-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + \frac{1}{2}m\omega^2 x^2\right]\psi(x) = E\psi(x)
$$

in this lecture: consider the groundstate only, $E=E_{\rm 0}$

ansatz:
$$
\psi_0(x) = A_0 e^{-ax^2}
$$
 normalisable, $a > 0$

compute:

$$
\frac{d}{dx}\psi_0(x) = -2axA_0e^{-ax^2} = -2ax\psi_0(x)
$$

$$
\frac{d^2}{dx^2}\psi_0(x) = -2a\psi_0(x) - 2ax\frac{d}{dx}\psi_0(x) = (-2a + 4a^2x^2)\psi_0(x)
$$

Solving the Schrödinger equation

substitute in Schrödinger equation

$$
\left[-\frac{\hbar^2}{2m}\left(-2a + 4a^2x^2\right) + \frac{1}{2}m\omega^2x^2\right]\psi_0(x) = E_0\psi_0(x)
$$

$$
\left[\frac{\hbar^2a}{m} - E_0 + \left(-\frac{2\hbar^2a^2}{m} + \frac{1}{2}m\omega^2\right)x^2\right]\psi_0(x) = 0
$$

C nontrivial solution:

$$
\frac{2\hbar^2 a^2}{m} = \frac{1}{2}m\omega^2 \qquad \qquad E_0 = \frac{\hbar^2 a}{m}
$$

or

$$
a = \frac{m\omega}{2\hbar} \qquad \qquad E_0 = \frac{1}{2}\hbar\omega
$$

Groundstate

wave function of the groundstate

$$
\psi_0(x) = A_0 e^{-ax^2} \qquad \qquad a = \frac{m\omega}{2\hbar} \qquad \qquad E_0 = \frac{1}{2}\hbar\omega
$$

normalisation

$$
\int_{-\infty}^{\infty} dx \, |\psi(x)|^2 = 1
$$

$$
A_0 = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4}
$$

c classical dynamics: groundstate $x=0$

quantum dynamics: \bullet nonzero probability to detect particle anywhere!

Excited states

\bullet extend calculation to states with higher energy

- every next wave function has additional zero \bullet
- alternate even and odd wave functions

More complicated spectra

- extend to atoms and molecules
- example:

spectrum of sodium

Application: Composition of stars

- light emitted by stars arises from transitions between \bullet energy levels in elements
- every element has ^a unique finger print

observation of spectral lines determines composition

- rich topic, taught at undergraduate and postgraduate \bullet level
- **C** fundamental to our understanding of Nature
- **...** the Universe
- **...** applied science
- ... and of technology!