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Quantum mechanics

quantum mechanics is the basic theory underlying all
of physics

developed in the first part of the 20th century to
address some fundamental questions

why are atoms stable?
what is light?
why do spectra from e.g. stars have discrete lines?
...

it has led to a revolution in physics, replacing classical
(Newtonian) mechanics
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Quantum mechanics

perhaps surprisingly, QM had immediate impact on the
understanding of materials

conductors

insulators

superconductors

semi-conductors

and hence led to the development of

transistors

computer chips

nanotechnology

cell phones, tablets ...
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Quantum mechanics

therefore, all the technology you are currently using builds
on quantum mechanics

in this lecture, I want to highlight one feature of QM

energy quantisation

responsible for the stability of matter

and ultimately material properties
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Classical energy

in Newtonian mechanics, the energy of a particle can take
any value (modulo constraints)
example:

particle in harmonic potential: V (x) = 1

2
kx2

total conserved energy:

E = K + V =
1

2
mv2 +

1

2
kx2 ≥ 0

determined by initial conditions:
here

x(t = 0) = 0

v(t = 0) = v0

time
0

en
er

gy

potential energypotential energy kinetic energy
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Quantum harmonic oscillator

in quantum mechanics, energy is quantised: not all energy
values are allowed

harmonic oscillator, with spring constant k = mω2:

En = ~ω

(

n+
1

2

)

n = 0, 1, 2...

groundstate, state with lowest energy:

classical: E0 = 0, particle at
rest in minimum of potential

quantum: E0 =
1

2
~ω,

due to ‘quantum fluctuations’

~ is Planck’s constant
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Quantum transitions

energy changes discontinuously: ∆E = Em − En

other transitions not allowed

also true in other systems, such as hydrogen atom

En = −
13.6

n2
eV n = 1, 2, 3...

leads to stability of matter
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Schrödinger equation

these features follow from the Schrödinger equation

postulated by Erwin Schrödinger in 1925

describes dynamics of the wave function ψ(t, x)

in one space dimension:

i~
∂

∂t
ψ(t, x) = Hψ(t, x)

with the Hamiltonian (energy function)

H = −
~2

2m

∂2

∂x2
+ V (x)

of the form ‘kinetic + potential energy’
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Schrödinger equation

this equation was devised, not derived

spectrum of hydrogen and other systems is
computable and agrees with observations

meaning of wave function not immediately clear

standard interpretation (Bohr, Born)

P (t, x) = |ψ(t, x)|2

probability density to find particle at position x at time t

normalisation
∫

∞

−∞

dx |ψ(t, x)|2 = 1

hence ψ(t, x) → 0 as x→ ±∞
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Solving the Schrödinger equation

partial differential equation

i~
∂

∂t
ψ(t, x) = Hψ(t, x)

elaborate solutions in general

time-independent problem

ψ(t, x) = e−iEt/~ψ(x)

ordinary differential equation (in one dimension)
[

−
~2

2m

d2

dx2
+ V (x)

]

ψ(x) = Eψ(x)

analytically solvable for selected potentials
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Solving the Schrödinger equation

harmonic oscillator: V (x) = 1

2
mω2x2

[

−
~2

2m

d2

dx2
+

1

2
mω2x2

]

ψ(x) = Eψ(x)

in this lecture: consider the groundstate only, E = E0

ansatz: ψ0(x) = A0e
−ax2

normalisable, a > 0

compute:

d

dx
ψ0(x) = −2axA0e

−ax2

= −2axψ0(x)

d2

dx2
ψ0(x) = −2aψ0(x)− 2ax

d

dx
ψ0(x) =

(

−2a+ 4a2x2
)

ψ0(x)
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Solving the Schrödinger equation

substitute in Schrödinger equation
[

−
~2

2m

(

−2a+ 4a2x2
)

+
1

2
mω2x2

]

ψ0(x) = E0ψ0(x)

[

~2a

m
− E0 +

(

−
2~2a2

m
+

1

2
mω2

)

x2
]

ψ0(x) = 0

nontrivial solution:

2~2a2

m
=

1

2
mω2 E0 =

~2a

m

or

a =
mω

2~
E0 =

1

2
~ω
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Groundstate

wave function of the groundstate

ψ0(x) = A0e
−ax2

a =
mω

2~
E0 =

1

2
~ω

normalisation
∫

∞

−∞

dx |ψ(x)|2 = 1

A0 =
(

mω

π~

)1/4

classical dynamics:
groundstate x = 0 -1 -0.5 0 0.5 1

x

|ψ
0(x

)|2

quantum dynamics:
nonzero probability to detect particle anywhere!
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Excited states

extend calculation to states with higher energy

every next wave function has additional zero

alternate even and odd wave functions
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More complicated spectra

extend to atoms and molecules

example:

spectrum of sodium
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Application: Composition of stars

light emitted by stars arises from transitions between
energy levels in elements

every element has a unique finger print

observation of spectral lines determines composition
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Quantum mechanics

rich topic, taught at undergraduate and postgraduate
level

fundamental to our understanding of Nature

... the Universe

... applied science

... and of technology!
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